262 research outputs found

    Seeing the smart city on Twitter: Colour and the affective territories of becoming smart

    No full text
    This paper pays attention to the immense and febrile field of digital image files which picture the smart city as they circulate on the social media platform Twitter. The paper considers tweeted images as an affective field in which flow and colour are especially generative. This luminescent field is territorialised into different, emergent forms of becoming ‘smart’. The paper identifies these territorialisations in two ways: firstly, by using the data visualisation software ImagePlot to create a visualisation of 9030 tweeted images related to smart cities; and secondly, by responding to the affective pushes of the image files thus visualised. It identifies two colours and three ways of affectively becoming smart: participating in smart, learning about smart, and anticipating smart, which are enacted with different distributions of mostly orange and blue images. The paper thus argues that debates about the power relations embedded in the smart city should consider the particular affective enactment of being smart that happens via social media. More generally, the paper concludes that geographers must pay more attention to the diverse and productive vitalities of social media platforms in urban life and that this will require experiment with methods that are responsive to specific digital qualities

    Future biogeochemical forcing in Eastern Siberia: cooling or warming?

    Get PDF
    Over-proportional warming in the northern high latitudes, and large carbon stocks in boreal and (sub)arctic ecosystems have raised concerns as to whether substantial positive climate feedbacks from biogeochemical process responses should be expected. Such feedbacks occur if increasing temperatures lead to e.g., a net release of CO2 or CH4. However, temperature-enhanced emissions of biogenic volatile organic compounds (BVOC) have been shown to contribute to a cooling feedback via growth of secondary organic aerosol (SOA), and related aerosol forcings. Combining measurements in Eastern Siberia with model-based estimates of vegetation and permafrost dynamics, BVOC emissions and aerosol growth, we show here that the additional climate forcing from changes in ecosystem CO2 balance and BVOC-SOA interactions nearly cancel on a regional scale. The interactions between emissions and vegetation dynamics that underlie individual forcing estimates are complex and highlight the importance of addressing ecosystem-climate feedbacks in consistent, process-based model frameworks that account for a multitude of system processes

    Future vegetation–climate interactions in Eastern Siberia: an assessment of the competing effects of CO2 and secondary organic aerosols

    Get PDF
    Disproportional warming in the northern high latitudes, and large carbon stocks in boreal and (sub)arctic ecosystems have raised concerns as to whether substantial positive climate feedbacks from biogeochemical process responses should be expected. Such feedbacks occur if increasing temperatures lead to e.g. a net release of CO2 or CH4. However, temperature-enhanced emissions of biogenic volatile organic compounds (BVOC) have been shown to contribute to the growth of secondary organic aerosol (SOA) which is known to have a negative radiative climate effect. Combining measurements in Eastern Siberia with model-based estimates of vegetation and permafrost dynamics, BVOC emissions and aerosol growth, we assess here possible future changes in ecosystem CO2 balance and BVOC-SOA interactions, and discuss these changes in terms of possible climate effects. On global level, both are very small but when concentrating on Siberia and the northern hemisphere the negative forcing from changed aerosol direct and indirect effects become notable – even though the associated temperature response would not necessarily follow a similar spatial pattern. While our analysis does not include other important processes that are of relevance for the climate system, the CO2 and BVOC-SOA interplay used serves as an example of the complexity of the interactions between emissions and vegetation dynamics that underlie individual terrestrial feedbacks and highlights the importance of addressing ecosystem-climate feedbacks in consistent, process-based model frameworks

    Not Belonging to one’s Self: Affect on Facebook’s Site Governance page

    Get PDF
    This article makes a contribution to a growing number of works that discuss affect and social media. I use Freudian affect theory to analyse user posts on the public Site Governance Facebook page. Freud’s work may help us to explore the affectivity within the user narratives and I suggest that they are expressions of alienation, dispossession and powerlessness that relate to the users’ relations with Facebook as well as to their internal and wider social relations. The article thus introduces a new angle on studies of negative user experiences that draws on psychoanalysis and critical theory

    The Sexual Use of a Social Networking Site: The Case of Pup Twitter

    Get PDF
    This article examines how Twitter has been adopted and used by a sexual subculture in distinct ways. Drawing on interviews with 26 gay and bisexual men based in the UK who identify as ‘pups’, it demonstrates how a kinky sexual subculture exists on a social networking site in new and innovative ways, adapting various elements of Twitter to form a unique subculture that I call ‘Pup Twitter’. Engaging with debates about social trends related to sexuality, as well as contemporary understandings of social networking sites, the study documents how this subcultural sexual community, while predating Twitter, has adopted online methods to enhance communication, engagement, and even visibility. The intersection of sexuality and social networking sites is an area ripe for further study, and this article develops empirical and conceptual ways to examine this issue in the future

    Observed coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in Beijing

    Get PDF
    Atmospheric aerosols have significant effects on the climate and on human health. New particle formation (NPF) is globally an important source of aerosols but its relevance especially towards aerosol mass loadings in highly polluted regions is still controversial. In addition, uncertainties remain regarding the processes leading to severe pollution episodes, concerning e.g. the role of atmospheric transport. In this study, we utilize air mass history analysis in combination with different fields related to the intensity of anthropogenic emissions in order to calculate air mass exposure to anthropogenic emissions (AME) prior to their arrival at Beijing, China. The AME is used as a semi-quantitative metric for describing the effect of air mass history on the potential for aerosol formation. We show that NPF events occur in clean air masses, described by low AME. However, increasing AME seems to be required for substantial growth of nucleation mode (diameter < 30 nm) particles, originating either from NPF or direct emissions, into larger mass-relevant sizes. This finding assists in establishing and understanding the connection between small nucleation mode particles, secondary aerosol formation and the development of pollution episodes. We further use the AME, in combination with basic meteorological variables, for developing a simple and easy-to-apply regression model to predict aerosol volume and mass concentrations. Since the model directly only accounts for changes in meteorological conditions, it can also be used to estimate the influence of emission changes on pollution levels. We apply the developed model to briefly investigate the effects of the COVID-19 lockdown on PM2.5 concentrations in Beijing. While no clear influence directly attributable to the lockdown measures is found, the results are in line with other studies utilizing more widely applied approaches.Peer reviewe

    Medicated bodies: Mental distress, social media and affect

    Get PDF
    Social media are increasingly being recruited into care practices in mental health. This paper analyses how a major new mental health social media site (www.elefriends.org.uk) is used when trying to manage the impact of psychiatric medication on the body. Drawing on Henri Bergson's concept of affection, analysis shows that Elefriends is used at particular moments of reconfiguration (e.g. change in dosage and/or medication), periods of self-experimentation (when people tailor their regimen by altering prescriptions or ceasing medication) and when dealing with a present bodily concern (showing how members have a direct, immediate relationship with the site). In addition, analysis illustrates how users face having to structure their communication to try to avoid 'triggering' distress in others. The paper concludes by pointing to the need to focus on the multiple emerging relationships between bodies and social media in mental health due to the ways the latter are becoming increasingly prominent technologies through which to experience the body when distressed

    Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO2 and organic acids

    Get PDF
    Oxidation processes in Earth's atmosphere are tightly connected to many environmental and human health issues and are essential drivers for biogeochemistry. Until the recent discovery of the atmospheric relevance of the reaction of stabilized Criegee intermediates (sCIs) with SO2, atmospheric oxidation processes were thought to be dominated by a few main oxidants: ozone, hydroxyl radicals (OH), nitrate radicals and, e.g. over oceans, halogen atoms such as chlorine. Here, we report results from laboratory experiments at 293 K and atmospheric pressure focusing on sCI formation from the ozonolysis of isoprene and the most abundant monoterpenes (α-pinene and limonene), and subsequent reactions of the resulting sCIs with SO2 producing sulfuric acid (H2SO4). The measured total sCI yields were (0.15 ± 0.07), (0.27 ± 0.12) and (0.58 ± 0.26) for α-pinene, limonene and isoprene, respectively. The ratio between the rate coefficient for the sCI loss (including thermal decomposition and the reaction with water vapour) and the rate coefficient for the reaction of sCI with SO2, k(loss) /k(sCI + SO2), was determined at relative humidities of 10 and 50%. Observed values represent the average reactivity of all sCIs produced from the individual alkene used in the ozonolysis. For the monoterpene-derived sCIs, the relative rate coefficients k(loss) / k(sCI + SO2) were in the range (2.0–2.4) × 1012 molecules cm−3 and nearly independent of the relative humidity. This fact points to a minor importance of the sCI + H2O reaction in the case of the sCI arising from α-pinene and limonene. For the isoprene sCIs, however, the ratio k(loss) / k(sCI + SO2) was strongly dependent on the relative humidity. To explore whether sCIs could have a more general role in atmospheric oxidation, we investigated as an example the reactivity of acetone oxide (sCI from the ozonolysis of 2,3-dimethyl-2-butene) toward small organic acids, i.e. formic and acetic acid. Acetone oxide was found to react faster with the organic acids than with SO2; k(sCI + acid) / k(sCI + SO2) = (2.8 ± 0.3) for formic acid, and k(sCI + acid) / k(sCI + SO2) = (3.4 ± 0.2) for acetic acid. This finding indicates that sCIs can play a role in the formation and loss of other atmospheric constituents besides SO2

    Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation

    Get PDF
    Aerosol particles affect the Earth's radiative balance by directly scattering and absorbing solar radiation and, indirectly, through their activation into cloud droplets. Both effects are known with considerable uncertainty only, and translate into even bigger uncertainties in future climate predictions. More than a decade ago, variations in galactic cosmic rays were suggested to closely correlate with variations in atmospheric cloud cover and therefore constitute a driving force behind aerosol-cloud-climate interactions. Later, the enhancement of atmospheric aerosol particle formation by ions generated from cosmic rays was proposed as a physical mechanism explaining this correlation. Here, we report unique observations on atmospheric aerosol formation based on measurements at the SMEAR II station, Finland, over a solar cycle (years 1996–2008) that shed new light on these presumed relationships. Our analysis shows that none of the quantities related to aerosol formation correlates with the cosmic ray-induced ionisation intensity (CRII). We also examined the contribution of ions to new particle formation on the basis of novel ground-based and airborne observations. A consistent result is that ion-induced formation contributes typically significantly less than 10% to the number of new particles, which would explain the missing correlation between CRII and aerosol formation. Our main conclusion is that galactic cosmic rays appear to play a minor role for atmospheric aerosol formation events, and so for the connected aerosol-climate effects as well
    • …
    corecore